
Generalized Pencil Of Function
Method

In recent times, the methodology of approximating a function by a sum of complex
exponentials has found applications in many areas of electromagnetics. For exam-
ple in antenna pattern synthesis [1] and in the extraction of the s-parameters of
microwave integrated circuits [2], in the computation of input impedance of electri-
cally wide slot antennas [3] and in the efficient evaluation of the Sommerfeld integral
[4], that is our goal. Two of the most popular linear methods used to estimate the
parameters of a sum of complex exponentials are the polynomial method, i.e Prony
method, and the matrix pencil method (called also GPOF)[5]. This method differs
from the well known Prony method because it finds the poles by solving a general-
ized eigenvalue problem instead of the conventional two-step process where the first
step involves the solution of a matrix equation, and the second step entails finding
the roots of a polynomial, as is required by Prony method.

Formulation

Let us consider a generic signal y(t)

y(t) = x(t) + n(t) ≈
M∑
i=1

Rie
sit + n(t) (1)

where n(t) is the possible noise of the system. We sample y(t) at kTs, where
k = 0, 1, ....N − 1 and Ts is the sampling period obtaing

y(kTs) = x(kTs) + n(kTs) ≈
M∑
i=1

Riz
k
i + n(kTs) (2)

where
zi = esiTs = e(αi+jωi)Ts (3)
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where i = 1, 2, ....M . Let us consider first a noiseless signal y(t)

y(t) = x(t) ≈
M∑
i=1

Rie
sit (4)

sampling this signal we obtain

y(kTs) = x(kTs) ≈
M∑
i=1

Riz
k
i (5)

with
zi = esiTs = e(αi+jωi)Ts (6)

where i = 1, 2, ....M . Our goal is to estimate M, si, Ri that approximate the function
y(t)
We define two matrices (N − L)× L Y

1
, Y

2

Y
1

=




y(0) y(1) · · · y(L− 1)
y(1) y(2) · · · y(L)

...
...

...
...

y(N − L− 1) y(N − L) · · · y(N − 2)




(N−L)×L

(7)

Y
2

=




y(1) y(2) · · · y(L)
y(2) y(3) · · · y(L + 1)

...
...

...
...

y(N − L) y(N − L + 1) · · · y(N − 1)




(N−L)×L

(8)

Introducing

R =




R1 0 · · · 0
0 R2 · · · 0
...

...
...

...
0 0 · · · Rm


 (9)

Z0 =




z1 0 · · · 0
0 z2 · · · 0
...

...
...

0 0 · · · zm


 (10)

Z
1

=




1 1 · · · 1
z1 z2 · · · zM
...

...
...

zN−L−1
1 zN−L−1

2 · · · zN−L−1
M




(N−L)×M

(11)
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Z
2

=




1 z1 · · · zL−1
1

1 z2 · · · zL−1
2

...
...

...
1 zM · · · zL−1

M




M×L

(12)

Y
1
, Y

2
can be written as

Y
1

= Z
1

R Z
2

(13)

Y
2

= Z
1

R Z
0

Z
2

(14)

Now let us consider the matrix pencil

Y
2
− λY

1
= Z

1
R {Z

0
− λI} Z

2
(15)

where I is a M ×M identity matrix . We can demostrate that if M ≤ L ≤ N −M
the rank of Y

2
−λY

1
is M; however, if λ = zi i = 1, 2, . . . M the i–th row of Z

0
−λI

is zero and the rank of Y
2
− λY

1
is reduced to M − 1. Moreover, the poles are the

generalized eigenvalues of the matrix pencil, so the problem of solving for zi can be
cast as an ordinary eigenvalue problem. Let us define the Moore–Penrose pseudo
inverse matrix of Y

1
as

Y +

1
= {Y H

1
Y

1
}−1Y H

1
(16)

where the superscript h indicates the conjugate transpose. Then,

Y +

1

[
Y

2
− λY

1

]
= Y +

1
Z

1
R

[
Z

0
− λI

]
Z2 (17)

=
[
Y H

1
Y

1

]−1

Y H

1
Y

2
−

[
Y H

1
Y

1

]−1

Y H

1
λY

1
(18)

=
[
Y H

1
Y

1

]−1

Y H

1
Y

2
− λI (19)

= Y +

1
Y

2
− λI (20)

Thus the parameters zi can be determined by solving the generalized eigenvalue
problem of

Y +

1
Y

2
− λI (21)

In presence of noise, (M ≤ L) we define the matrix Y as a combination of Y
1
, Y

2

Y =




y0 y1 · · · yL−1

y1 y2 · · · yL
...

...
...

yN−L−1 yN−L · · · yN−2




(N−L)×(L+1)

(22)
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We carry out a Singular Value Decomposition of the matrix Y

Y
(N−L)×(L+1)

= U Σ V H (23)

where U , V are unitary matrices with dimensions (N − L)× (N − L) e (L + 1) ×
(L + 1), respectively given by the eigenvalues of Y Y H and Y HY . While Σ is a
(N − L)× (L + 1) diagonal matrix composed of the singular values of Y :

Σ = diag(σ1, σ2, . . . , σp); p = min{N − L,L+} (24)

where |σ1| ≥ |σ2| ≥ . . . ≥ |σp| ≥ 0.
Now we can estimate the M parameter. This is done comparing the largest

singular value σmax with the other σc and defining a threshold q. This is linked to
the significant decimal digits in the data. Therefore, we consider only the singular
values that are

|σc|
|σmax| ≈ 10−q (25)

The other singular values are treated as zero, since we consider them only given by
noise. We can now construct a filtered matrix V ′ so that it contains only the M
dominant right singular vectors of V so that Y is given by

Y = U Σ′ V ′H (26)

Σ ′ is containg only the M dominant singular values of Σ.
We have defined Y

1
and Y

2
that are constructed deleting respectively the last

and the firts row of Y

Y
1

= U Σ ′ V ′
1

H
(27)

Y
2

= U Σ ′ V ′H
2

(28)

we can demostrate that the eigenvalues of

{
Y +

1
Y

2
− λI

}
(29)

are the same as the ones of

{V ′
1

H}+ {V ′
2

H}+ − λI (30)

Once the M and zi are known we can solve the matrix equation by least square to
calculate Ri.
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y0

y1
...

yN−1


 =




1 1 . . . 1
z1 z2 . . . zm

z2
1 z2

2 z2
m

...
...

...
zN−1
1 zN−1

2 . . . zN−1
m







R1

R2
...

RM


 (31)

Prony-Type Method

For sake of completeness, we describe also the Prony method,even if its computa-
tionally less efficient ans also unstable in case of noisy signal. We consider once
again the same generic signal y(t).

Given M complex number zi, with i = 1, 2..,M , there exist only one complex
number ai ∈ C with i = 1, 2, ...M , so that zi are solutions of

M∑

k=0

akz
−k = 0 a0 ≡ 1 (32)

→ finding the coefficient ai is equivalent to determine the poles zi. Moreover, we
can demostrate that if

p(λ) =
L∑

k=0

akλ
−k = 0 (33)

where p(zi) ≡ 0∀i = 1, 2, ...M If

yn =
M∑
i=1

Riz
n
i (34)

for n = 0, 1, .., N − 1 then, if L ≤ m ≤ N − 1 with M ≤ L

L∑

k=0

ym−kak = 0 (35)

Considering

ym−k =
M∑
i=1

Riz
m−k (36)

substituting

L∑

k=0

ym−kak =
L∑

k=0

(
M∑
i=1

Riz
m
i z−k

i

)
ak =

M∑
i=1

Riz
m
i

L∑

k=0

z−k
i ak

︸ ︷︷ ︸
= 0 (37)

p(zi) ≡ 0 (38)
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We can write ( 35) in matrix form ∀m ∈ (l, N − 1)

Y a =




y0 y1 · · · yL−1 | yL

y1 y2 · · · yL | yL+1
...

...
... | ...

yN−L−1 · · · · · · yN−2 | yN−1







aL

aL−1
...
a0︸︷︷︸


 = 0 (39)

Y a = Y
1
y




a
. . .
a0


 (40)

since a0 ≡ 1 =⇒ Y a = Y
1
a + y = 0 so,

=⇒ Y
1
a = −y.

where Y
1

has dimension of L× [(N − 1)−L]. In order to generalize the method we
have to write the polynomial form of the signal so that we can distinguish the roots
of the signal to those due to noise. This solution, called minimum-norm solution is
given by

a = −Y +

1
y (41)

where Y +

1
is once again the Moore-Penrose pseudo-inverse matrix. In case of noisy

signal the Moore-Penrose pseudo-inverse matrix Y +

1
is replaced by a truncated rank-

M pseudo-inverse which is formed by the first M largest singular values. The choice
of M is the same as in the Matrix pencil method.
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