
The Integral Equation

Introduction

This chapter introduces the theoretical framework of this study, starting with the
description of the classical EFIE [1] and MPIE formulations [2]-[4]. In order to
clarify how the Green’s function is obtained the transmission line model is also
included. Since different formulations for the Mixed Potential Integral Equation
are possible, their features with respect to our goal are reported.

Electric Field Integral Equation Formulation

Consider a medium consisting of n + 1 dielectric layers separated by n planar in-
terfaces parallel to the xy plane of a Cartesian coordinate system and located at
z = zi, i = 1, 2, ..., n as illustrated in Fig. 1. Each layer is characterized by a per-
mittivity εi and permeability µi. Before writing the electric field integral equation
for the above mentioned problem we have to make a few assumptions. First of all
we consider an object embedded in a multilayered media, as sketched in Fig. 1, and
we assume that it occupies p layers (named L = l1, l2..., lp) with 1 ≤ p ≤ n + 1. Let
Si be the surface of the object and n̂i be the unit vector normal to Si. By using the
equivalence principle we derive

Ms = −n̂m × (Ei
m + Es

m[Js;Ms])S+ (1)

Ms = n̂m × (Hi
m + Hs

m[Js;Ms])S+ (2)

Moreover, if the medium is linear, we may express the fields due to arbitrary current
distributions as

E =

∫

S

GEe · JdS +

∫

S

GEm ·MdS (3)

H =

∫

S

GHe · JdS +

∫

S

GHm ·MdS (4)
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Figure 1: Generic multilayered medium geometry.

where GPQ is the dyadic Green’s function relating the P-type fields at r to the Q-
type currents at r ′, where r and r ′ are the radial distance of source and observation,
respectively. For the sake of simplicity we consider only the case of a PEC object
embedded in a multilayered medium. The boundary condition on Si in this case is
reduced to

−n̂m × Es
m(r) = n̂m × Einc

m (r) r on Sm,m ∈ L (5)

where Einc
m is the electric field in the m− th layer in the absence of the object, and

Es
m is the scattered electric field in the m − th layer. The Es

m and the magnetic
scattered field Hs

m for the described problem can be expressed as

−Es
m(r) =

∑
i∈L

[
jωAmi(r) +∇Φmi(r)

]
(6)

Hs
m(r) =

1

µm

∇×
∑
i∈L

Ami(r) (7)

where the magnetic vector potential in the m − th layer due to a current J in the
i− th layer and the corresponding scalar potential Φmi are given as

Ami(r) =

∫

Si

Gmi
A (r|r ′) · J(r ′)dS ′ (8)

Φmi(r) =
jω

k2
m

∇ ·Ami(r) (9)
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The dyadic Green’s function, which represents the magnetic vector potential in
region m due to a unit-strength, arbitrarly oriented dipole in region i, can be found
simply by solving the inhomogeneous Helmholtz equation [5]

(∇2 + k2
m)Gmi

A (r|r ′) = −µmIδ(r− r ′) (10)

Considering a horizontal, x-directed dipole, the Green’s function takes the following
forms, according to whether or not the z or the y component is chosen to accompany
the primary component x [3].

Gi
A = (x̂x̂ + ŷŷ)Gi

xx + ẑx̂Gi
zx + ẑŷGi

zy + ẑẑGi
zz , (11)

Gi
A = x̂x̂Gi

xx + ŷŷGi
yy + (x̂ŷ + ŷx̂)Gi

xy + ẑẑGi
zz , (12)

Substituting (9) in (7) and then in (5) we obtain the so-called vector-potential
EFIE.

jω

k2
m

n̂m ×
∑
i∈L

(
k2

m

∫

Si

Gmi
A (r|r ′) · J(r ′)dS ′ +∇∇ ·

∫

Si

Gmi
A (r|r ′) · J(r ′)dS ′

)
=

n̂m × Einc
m (r) (13)

By introducing one of the operators ∇ into the integral and then transferring it
to act on the current, we obtain the desidered mixed-potential EFIE. It is not
convenient to introduce both the operators ∇ into the integral because of the highly
singular behavior of the dyadic kernel thus obtained [3].

MPIE Mixed Potential EFIE

Several studies have pointed out the advantages of the mixed potential formulation
in solving antenna problems [6]-[7]. It would be possible to derive the desidered
mixed potential form from 13 if the scalar potential could be expressed in terms of
surface charge density q(r). Based on 9 we can rewrite the scaler potential as

Φmi(r) =
jω

k2
m

∫

Si

[∇ ·Gmi
A (r|r ′)] · J(r ′)dS ′ (14)

Moreover, we have to transfer the divergence operator to act on the current, in view
of the equation of continuity ∇ · J = −jωq. The desidered mixed potential form
would be achieved if the scalar potential could be expressed in terms of surface
charge density q(r). Therefore, we have to transfer the divergence operator to act
on the current, in view of the equation of continuity ∇ · J = −jωq. This can be
done only if we can define a scalar function Gmi

Φ , such as

jω

k2
m

∇ ·Gmi
A (r|r ′) =

1

jω
∇ ′Gmi

Φ (r|r ′). (15)
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For a stratified medium, in general, a Gmi
Φ that satisfies eq. 15 does not exist [8]. This

can be attributed to the fact that the scalar potentials of point charges associated
with vertical and horizontal dipoles in a layered medium are usually different [9].
Then, in order to achieve our goal, let us introduce a scalar function Kmi

Φ and a
vector function Pmi according to

jω

k2
m

∇ ·Gmi
A (r|r ′) =

1

jω
∇ ′Kmi

Φ (r|r ′) + jωPmi(r|r ′). (16)

substituting (16) in (14) and introducing the dyadic kernel

Kmi
A (r|r ′) = Gmi

A (r|r ′) +∇Pmi(r|r ′). (17)

The mixed potential representation for the fields E and H is then

E = −jωµ

∫

Si

Gmi
A (r|r ′) · J(r ′)dS ′ +

1

jωε

∫

Si

Kmi
φ (r|r ′)q(r ′)dS ′+

1

jωε
∇

∫

Si

Pmi(r|r ′) · J(r ′)dS ′ +
∫

Si

Gmi
Em(r|r ′) ·M(r ′)dS ′+

∇
jω

∮

Ci

Kmi
φ (r|r ′)J(r ′) · ûidC ′ −

∮

Ci−1

Kmi
φ (r|r ′)J(r ′) · ûi−1dC ′ (18)

H = −jωε

∫

Si

Gmi
F (r|r ′) ·M(r ′)dS ′ +

1

jωµ

∫

Si

Kmi
φ (r|r ′)qm(r ′)dS ′+

1

jωµ
∇

∫

Si

Pmi(r|r ′) ·M(r ′)dS ′ +
∫

Si

Gmi
He(r|r ′) · J(r ′)dS ′+

∇
jω

∮

Ci

Kmi
φ (r|r ′)M(r ′) · ûidC ′ −

∮

Ci−1

Kmi
φ (r|r ′)M(r ′) · ûi−1dC ′ (19)

where Ci and Ci−1 are the contours formed by the intersection of the surface Si

with the interfaces z = zi and z = zi−1, respectively. Consequently, using (18), the
(5) reduces to

n̂m ×
∑
i∈L

(
jω

∫

Si

Kmi
A (r|r ′) · J(r ′)dS ′ +∇

∫

Si

Kmi
φ (r|r ′)q(r ′)dS ′+

∇
jω

∮

Ci

Kmi
φ (r|r ′)J(r ′) · ûidC ′ −

∮

Ci−1

Kmi
φ (r|r ′)J(r ′) · ûi−1dC ′

)
=

n̂m × Einc
m (r) (20)

The unit vectors ui and ui−1 are defined as ûi = t̂i × n̂i, where n̂i is the normal
vector to Ci and t̂i is the tangent vector to Ci. Since Kmi

Φ and Pmi are not unique,
the contour integrals, properly chosen, could be canceled out, thus obtaining the
desidered mixed potential formulation. The choice of Kmi

Φ and Pmi gives rise to
different formulations.
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Transmission line model

Before discussing the possible MPIE formulations it is useful to derive the compo-
nents of the Green’s function either in (11) or (12). The transmission line model
allows us to obtain a model in which the exponential form of the spectral domain
Green’s function can be easily pointed out. Since we are looking for a spectral
domain form for the Green’s function suitable for the GPOF formulation [10] the
transmission line model seems to be the most useful one. Moreover, the analysis is
easier when the problem is formulated in a transformed spectral domain, according
to the following Fourier transform pair [1]

F [f(r)] = f̃(kρ; z) =

∫ ∞

−∞

∫ ∞

−∞
f(r)ejkρ·ρdxdy (21)

F−1[f̃(kρ; z)] = f(r) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
f̃(kρ; z)e−jkρ·ρdkxdky (22)

where ρ = x̂x+ ŷy and kρ = x̂kx + ŷky. When we consider homogeneous layered me-
dia of infinite extend in any transverse (to z) plane, the spectral domain approach
is the easiest way to determine the Green’s function, since it reduces the original
problem to solve an equivalent transmission line network, where each section corre-
sponds to a different layer of the medium. [11], [12]. The medium is characterized
by a z-dependent complex-valued permeability, in general, and permittivity dyadics
µ = Itµt + ẑẑµz, ε = Itεt + ẑẑεz, where It is the transverse unit dyadic. As a con-

sequence of our assumptions we have made, we can separate the fields into their
transverse and longitudinal parts, obtaining

Hz =
1

jωµ
[∇t · (z × Et)−Mz] (23)

Ez =
1

jωε
[∇t · (Ht × z)− Jz] (24)

−∂Et

∂z
= jωµ

(
It +

∇t∇t

k2

)
· (Ht × z) + Mte × z (25)

−∂Ht

∂z
= jωε

(
It +

∇t∇t

k2

)
· (z × Et) + z × Jte (26)

where Mte = Mt + z × ∇tJz

jωε
and Jte = Jt + z × ∇tMz

jωµ
. Upon applying the Fourier

transform pair defined in (22) to (26) and considering that the operator ∇ becomes



6

k y

k x
x

y
uv

z

k rz  X  k r

Figure 2: spectral-domain coordinate system.

∇t ← −jkρ = −jkxx− jkyy in this domain, we obtain the following expressions

H̃z = − 1

ωµ
[kρ · (z × Ẽt)− jM̃z] (27)

Ẽz = − 1

ωε
[kρ · (H̃t × z)− jJ̃z] (28)

−∂Ẽt

∂z
= jωµ

(
It +

kρkρ

k2

)
· (H̃t × z) + M̃te × z (29)

−∂H̃t

∂z
= jωε

(
It +

kρkρ

k2

)
· (z × Ẽt) + z × J̃te (30)

M̃te = M̃t + z × kρJ̃z

ωε
(31)

J̃te = J̃t + z × kρM̃z

ωµ
(32)

where kρ =
√

k2
x + k2

y. Let us define a new coordinate system in the transverse plane
as in Fig. 2 whose origin coincides with the origin of the xy coordinate system and
with the unit vectors (û, v̂) defined as

(
û
v̂

)
=

(
kx

kρ

ky

kρ

−ky

kρ

kx

kρ

)(
x̂
ŷ

)
(33)
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We now express both the fields and the sources in this new coordinate system
considering their projection both on the û and v̂ axes, thus obtaining

∂Ẽu

∂z
= −jkz

kz

ωε
H̃v + M̃ve (34)

∂H̃v

∂z
= −jkz

ωε

kz

Ẽu + J̃ue (35)

∂Ẽv

∂z
= jkz

ωµ

kz

H̃u + M̃ue (36)

−∂H̃u

∂z
= −jkz

kz

ωµ
Ẽv + J̃ve (37)

Moreover, we can express the current distributions as

J̃ue = J̃u (38)

J̃ve = J̃v +
krhoM̃z

ωµ
(39)

M̃ve = M̃v − kρJ̃z

ωε
(40)

M̃ue = M̃u (41)

While the longitudinal components yield

H̃z = − 1

ωµ
[kρ(Ẽv)− jM̃z] (42)

Ẽz = − 1

ωε
[kρ(H̃v)− jJ̃z] (43)

We have thus obtained two sets of decoupled equations. The field described by the
first and the second equation of (37) represents a field that is TM to z, while the
other two expressions represent a field that is TE to z. Thus, the problem can be
reduced to two sets of transmission line equations in the form

∂V

∂z
= −jkQ

z ZQIQ + vQ (44)

∂I

∂z
= −jkQ

z Y QV Q + iQ (45)

where Q assumes the values of TM,TE. The characteristics of this equivalent trans-
mission line are defined for the TM and TE cases, respectively, as follows

V TM = Ẽu ITM = H̃v ZTM =
kz

ωε
vTM = −M̃ve iTM = −J̃ue (46)

V TE = Ẽv ITE = −H̃u ZTE =
ωµ

kz

vTE = −M̃ue iTE = −J̃ve (47)
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Figure 3: Equivalent transmission line problem
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Figure 4: Equivalent problem for the determination of the transmission line Green’s
functions

We can notice that the original problem, in the spectral domain, reduces to a scalar
transmission line problem (see Fig. (3)), which allows us to derive the dyadic Green’s
function simply by solving the telegraphist’s equation. The solution of (47) can
be obtained at any point z as the superposition of the solutions of two equivalent
transmission line problems as sketched in Fig. 4. For this problem, considering
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unit-strength impulsive sources, we can write the following equations

∂V Q
i

∂z
= −jkQ

z ZQIQ
i (48)

∂IQ
i

∂z
= −jkQ

z Y QV Q
i + δ(z − z′) (49)

∂V Q
v

∂z
= −jkQ

z ZQIQ
v + δ(z − z′) (50)

∂IQ
v

∂z
= −jkQ

z Y QV Q
v (51)

(52)

where V Q
v (z|z ′) and IQ

v (z|z ′) denote the voltage and the current, respectively, at
z due to a unit series voltage source at z ′, while V Q

i (z|z ′) and IQ
i (z|z ′) are the

voltage and the current, respectively, at z due to a unit shunt current source at
z ′; and, obviously for the linearity of the problem, V (z) and I(z) are given by the
combination of Vv, Iv, Vi, Ii. Upon substituting these equations into (37) and (43),
and using (47) we obtain

Ẽu(z) = −V TM
v (z, z ′)M̃ve(z

′)− V TM
i (z, z ′)J̃ue(z

′) (53)

H̃v(z) = −ITM
v (z, z ′)M̃ve(z

′)− ITM
i (z, z ′)J̃ue(z

′) (54)

Ẽz(z) = − 1

ωε(z)
{kρ[−ITM

v (z, z ′)M̃ve(z
′)− ITM

i (z, z ′)J̃ue(z
′)]− jJ̃z(z

′)δ(z − z ′)}
(55)

Ẽv(z) = V TE
v (z, z ′)M̃ue(z

′)− V TE
i (z, z ′)J̃ve(z

′) (56)

H̃u(z) = −ITE
v (z, z ′)M̃ue(z

′) + ITE
i (z, z ′)J̃ve(z

′) (57)

H̃z(z) = − 1

ωµ(z)
{kρ[−V TE

v (z, z ′)M̃ue(z
′)− V TE

i (z, z ′)J̃ve(z
′)]− jM̃z(z

′)δ(z − z ′)}
(58)

In order to achieve our aim of expressing these quantities in the xy coordinate
system, we consider the inverse of (33), that is

(
x̂
ŷ

)
=

(
kx

kρ
−ky

kρ
ky

kρ

kx

kρ

)(
û
v̂

)
(59)

Applying (59) to J̃ue, J̃ve we obtain

(
J̃ue

J̃ve

)
=

(
kx

kρ

ky

kρ
0

−ky

kρ

kx

kρ
0

) 


J̃x

J̃y

J̃z


 +

(
0 0 0

0 0 kρ

ωµ(z ′)

) 


M̃x

M̃y

M̃z


 (60)
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and, similarly, for M̃ue, M̃ve we can write

(
M̃ue

M̃ve

)
=

(
0 0 0

0 0 − kρ

ωε(z ′)

) 


J̃x

J̃y

J̃z


 +

(
kx

kρ

ky

kρ
0

−ky

kρ

kx

kρ
0

)


M̃x

M̃y

M̃z


 (61)

Therefore, applying (59), (60) and (61), it is possible to compute the E and H fields
in the xy coordinate system,

(
Ẽx

Ẽy

)
=

(
kx

kρ
−ky

kρ
0

ky

kρ

kx

kρ
0

) 


(
−kx

kρ
V TM

i −ky

kρ
V TM

i
kρ

ωε(z ′)V
TM
v

ky

kρ
V TE

i −kx

kρ
V TE

i 0

)


J̃x

J̃y

J̃z


 +

(
−ky

kρ
V TM

v −kx

kρ
V TM

v 0
kx

kρ
V TE

v
ky

kρ
V TE

v − kρ

ωµ(z ′)V
TE
i

) 


M̃x

M̃y

M̃z





 (62)

(
H̃x

H̃y

)
=

(
kx

kρ
−ky

kρ
0

ky

kρ

kx

kρ
0

)


(
−ky

kρ
ITE
i

kx

kρ
ITE
i 0

−kx

kρ
ITM
i −ky

kρ
ITM
i

kρ

ωε(z ′)I
TM
v

)


J̃x

J̃y

J̃z


 +

(
−kx

kρ
ITE
v −ky

kρ
ITE
v

kρ

ωµ(z ′)I
TE
i

ky

kρ
ITM
v −kx

kρ
ITM
v 0

) 


M̃x

M̃y

M̃z





 (63)

In order to obtain the complete expression for the Green’s functions in (4), we
have to add the longitudinal components Ez, Hz in the xy coordinate system to the
previous expressions. For the sake of simplicity, let us consider only the electric
current distribution in (62) and (63). Introducing the longitudinal components as
well we obtain




Ẽx

Ẽy

Ẽz


 =




−k2
xV TM

i +k2
yV TE

i

k2
ρ

−kykx(V TM
i −V TE

i )

k2
ρ

kxV TM
v

ωε(z ′)

−kykx(V TM
i −V TE

i )

k2
ρ

−k2
yV TM

i +k2
xV TE

i

k2
ρ

kyV TM
v

ωε(z ′)
kxITM

i

ωε(z ′)
kyITM

i

ωε(z ′) − 1
ωε(z ′)

[
k2

ρITM
i

ωε(z ′) − jδ(z − z ′)
]







J̃x

J̃y

J̃z




(64)



H̃x

H̃y

H̃z


 =



−kykx(−ITE

i −ITM
i )

k2
ρ

−k2
xITE

i +k2
yITM

i

k2
ρ

kyITM
v

ωε(z ′)

−k2
yITE

i −k2
xITM

i

k2
ρ

−kykx(ITM
i −ITE

i )

k2
ρ

−kxITM
v

ωε(z ′)
kyV TE

i

ωµ(z ′) −kxV TE
i

ωµ(z ′) 0







J̃x

J̃y

J̃z


 (65)
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Therefore, the fields due to an electric current distribution in the spectral-domain
(i.e., the spectral domain counterpart of (4)) can be written as

Ẽ =

∫

S

G̃
Ee · J̃dS (66)

H̃ =

∫

S

G̃
He · J̃dS (67)

where G̃
He

and G̃
Ee

are given by the elements of the matrix in (65) and (64),
respectively. The aim is to evaluate the dyadic components of the Green’s function
in (11). Considering (67) and the field expression in terms of scalar and vector
potentials, which are rewritten here for the sake of simplicity without magnetic
current distributions

E = −jωA−∇Φ (68)

µH = ∇×A (69)

A = µ

∫
GA · JdS (70)

it follows that, considering the counterparts in the spectral-domain of all the quan-
tities, we obtain

µ · G̃He
= ∇× G̃A (71)

In a matrix form, considering the expression for the ∇ operator in the spectral
domain and (11), we obtain

µ



−kykx(−ITE

i −ITM
i )

k2
ρ

−k2
xITE

i +k2
yITM

i

k2
ρ

kyITM
v

ωε(z ′)

−k2
yITE

i −k2
xITM

i

k2
ρ

−kykx(ITM
i −ITE

i )

k2
ρ

−kxITM
v

ωε(z ′)
kyV TE

i

ωµ(z ′) −kxV TE
i

ωµ(z ′) 0


 =




−jkyG̃
mi
zx −jkyG̃

mi
zy − ∂G̃mi

xx

∂z
−jkyG̃

mi
zz

jkxG̃
mi
zx + ∂G̃mi

xx

∂z
jkxG̃

mi
zy jkxG̃

mi
zz

jkyG̃
mi
xx −jkxG̃

mi
xx


 (72)

This allows us to find each component of G̃A in ( 11)

−jkxG̃
mi
xx =

µ

ω
kxV

TE
i → Gmi

xx =
1

jω
V TE

i (73)

jkxG̃
mi
zz = − µ

ωε
kxI

TM
v → Gmi

zz = − µ

jωε
ITM
v (74)

−jkxG̃
mi
zy =

µ

k2
ρ

kykx(I
TE
i − ITM

i ) → Gmi
zy = −j

µ

k2
ρ

ky(I
TE
i − ITM

i ) (75)

−jkyG̃
mi
zx =

µ

k2
ρ

kxky(−ITE
i + ITM

i ) → Gmi
zx = − µ

k2
ρ

kx(−ITE
i + ITM

i ) (76)
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Following an equivalent procedure for the expression of G̃A in (12), we are able to
derive an analogous relation for the other components.

Mixed potential EFIE formulations

In paragraph it has been pointed out that the choice of Kmi
Φ and Pmi is not

unique. Based on a different choice of these parameters, different mixed potential
formulations can be derived [3]. In this section we briefly present three of these
formulations in order to explain our choice. As already mentioned, the dyadic
kernel Kmi

A can be expressed as follows

Kmi
A (r|r ′) = Gmi

A (r|r ′) +∇Pmi(r|r ′). (77)

where Pmi is the ”correction factor”. Unfortunately, this term introduces new
elements into the dyadic kernel. So we have to operate a choice in order to reduce
as much as possible, the number of non-zero dyadic elements. For the vector’s
Green’s function in (11) or (12) we can see that the x and y component of Pmi are
not independent. This leaves us only two degrees of freedom for each buGmi

A , hence

Pmi
x = Pmi

y = 0 , Pmi
z 6= 0 (78)

Pmi
x 6= 0Pmi

y 6= 0 , Pmi
z = 0 (79)

We can write each component of (77) in the spectral domain, substituting the
following to the vector’s Green’s function in (11) and (12), respectively

jω

k2
m

(
−jkxG̃

mi
xx +

∂G̃mi
zx

∂z

)
=

1

jω
jkxK̃

mi
φ + jωP̃mi

x (80)

jω

k2
m

(
−jkyG̃

mi
xx +

∂G̃mi
zy

∂z

)
=

1

jω
jkyK̃

mi
φ + jωP̃mi

y (81)

jω

k2
m

∂G̃mi
zz

∂z
=

1

jω

∂K̃mi
φ

∂z ′
+ jωP̃mi

z (82)

jω

k2
m

(
−jkxG̃

mi
xx − jkyG̃

mi
xy

)
=

1

jω
jkxK̃

mi
φ + jωP̃mi

x (83)

jω

k2
m

(
−jkxG̃

mi
xy − jkyG̃

mi
yy

)
=

1

jω
jkyK̃

mi
φ + jωP̃mi

y (84)

jω

k2
m

∂G̃mi
zz

∂z
=

1

jω

∂K̃mi
φ

∂z ′
+ jωP̃mi

z (85)
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Formulation A

Let us consider the dyadic Green’s function given in (85) [3]. In this formulation
we force Pmi

x ,and Pmi
y to be zero; therefore, considering the expressions carried out

from the transmission line model, KΦ can be interpreted as the scalar potential
of a point charge associated with a horizontal dipole. Solving (85) with Pmi

x =
Pmi

y = 0 and using the counterpart of (76) for (12) we obtain the expressions of

KΦ, P̃mi
z . Substituting these in (17) we obtain the relation between the dyadic kernel

components and the equivalent transmission line parameters, from which we can
deduce that K̃A = G̃A, when the object is confined in a single layer (m=i), otherwise
we introduce two new terms into the dyadic expression. The main advantage of
this formulation is the cancellation of the contour integrals in (20), thanks to the
continuity of the scalar potential kernel at the i− th interface, with respect to the
z ′ coordinate. There is no continuity with respect to the z coordinate.

Formulation B

Within this formulation as well we use (12), but now we choose Pmi
z = 0 [9]. Based

on the previous results, this time KΦ can be interpreted as the scalar potential of
a point charge associated with a vertical dipole. Following a procedure similar to
that described for the A formulation, we deduce that also in this case K̃A = G̃A,
when the object is confined in a single layer (m=i), otherwise we introduce two new
terms into the dyadic expression. The main drawback of this formulation is that
we do not obtain the cancellation of the contour integrals in the expression of Φmi

since the continuity of the scalar potential kernel at the i− th interface corresponds
to the z coordinate and not to the z ′ coordinate.

Formulation C

In order to obtain this formulation we use (11) and choose Pmi
x = Pmi

y = 0. KΦ

can be now interpreted as the scalar potential of a point charge associated with
a horizontal dipole. Main advantage: cancellation of the contour integrals in (20)
again thanks to the continuity of the scalar potential kernel at the i− th interface
with respect to the z ′ coordinate as in Formulation A; but in this case we also
have the continuity of the z coordinate. The main drawback is the introduction of
additional terms to the dyadic kernel even when the object is confined to a single
layer. Why can formulation C be preferable to the others? It is preferable with
objects penetrating an interface because it does not have any contour integrals and
because its scalar potential kernel is continuous at the interfaces with respect to
both z and z ′, which results in a simplification when we study general structures
in which we can have objects not confined to a single layer. The drawback of



14

this formulation is that we obtain a more complex equation compared to those in
formulation A, so it is convenient to use it only when both vertical and horizontal
currents are present. In the case of sources confined in a single layer or when only a
type of exitation is present (i.e. vertical or horizontal) the most convenient approach
is to use of the results of formulation A.



Closed form of the Green’s
function for multilayered
structures

A closed form of the Green’s function in the spatial domain is one of the possible
means for reducing the convergence problems and computational efforts when we
apply a method of moments. In fact, if we express the spatial domain Green’s
function in a closed form, the inner products in a MoM matrix formulation become
two-dimensional integrals over finite ranges, and the time-consuming part of the
method of moments in the spatial domain, which entails the evaluation of the in-
tegral representations of the Green’s functions, is completely avoided. It is also a
well known fact that a closed form of the Green’s function in planar layered me-
dia can be obtained analytically only in the spectral domain. Therefore, a closed
form of the Green’s function in the spatial domain can be achieved only by apply-
ing some approximation techniques. In the following sections we derive a possible
approximation.

Spectral domain Green’s function

Let us consider a general multilayered environment, as depicted in Fig. 5. It is as-
sumed that all layers, including the ground plane, extend to infinity in the horizontal
plane, and that the conductors are lossless and infinitesimally thin. We denote by
εi, µi and di the permittivity, permeability and thickness of the layer i. The spectral
domain Green’s functions in the source layer in the cases of the Horizontal Elec-
tric Diplole (HED), Vertical Electric Diplole (VED), Horizontal Magnetic Diplole
(HMD) and Vertical Magnetic Diplole (VMD) sources are listed in the following
paragraphs. These are directly obtained from (76) once the pertinent expressions
for voltage, current and the characteristic impedance of the equivalent transmission
line being tested have been substituted. We note that the z|z′ dependence of the
fields in the source region can be written as the sum of the direct term and the
up and down-going waves due to the reflections from the top and bottom bound-

15
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z

xd i

d 2

d 1

d n

d n - 1

Figure 5: Generic multilayered medium geometry.

aries. The coefficients of the up and down-going waves can be obtained in terms of
generalized reflection coefficients by applying the appropriate boundary conditions
[21].

HED

G̃A
xx =

µi

2jkz

[
e−jkz |z−z′| + Ae

he
jkz(z−z′) + Ce

he
−jkz(z−z′)

]
, (86)

G̃A
zx

kx

=
−µi

2jk2
ρ

[
(Ae

h + Be
h)e

jkz(z−z′) + (De
h − Ce

h)e
−jkz(z−z′)

]
, (87)

G̃q
x =

1

2jεikz

[
e−jkz |z−z′| +

k2
i A

e
h + k2

zB
e
h

k2
ρ

ejkz(z−z′) +
k2

i C
e
h − k2

zD
e
h

k2
ρ

e−jkz(z−z′)
]

(88)

VED

G̃A
zz =

µi

2jkz

[
e−jkz |z−z′| + Ae

ve
jkz(z−z′) + Be

ve
−jkz(z−z′)

]
, (89)

G̃q
z =

1

2jεikz

[
e−jkz |z−z′| + Ce

ve
jkz(z−z′) + De

ve
−jkz(z−z′)

]
, (90)
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HMD

G̃F
xx =

εi

2jkz

[
e−jkz |z−z′| + Am

h ejkz(z−z′) + Cm
h e−jkz(z−z′)

]
, (91)

G̃F
zx

kx

=
−εi

2jk2
ρ

[
(Am

h + Bm
h )ejkz(z−z′) + (Dm

h − Cm
h )e−jkz(z−z′)

]
, (92)

G̃q
x =

1

2jµikz

[
e−jkz |z−z′| +

k2
i A

m
h + k2

zB
m
h

k2
ρ

ejkz(z−z′) +
k2

i C
m
h − k2

zD
m
h

k2
ρ

e−jkz(z−z′)
]

(93)

VMD

G̃F
zz =

εi

2jkz

[
e−jkz |z−z′| + Am

v ejkz(z−z′) + Bm
v e−jkz(z−z′)

]
, (94)

G̃q
z =

1

2jµikz

[
e−jkz |z−z′| + Cm

v ejkz(z−z′) + Dm
v e−jkz(z−z′)

]
, (95)

The coefficients Ae,m
h,v , Be,m

h,v , Ce,m
h,v , De,m

h,v are functions of the generalized reflection

coefficients R̃TE,TM and are given by

Ae,m
h =

[
e−2jkzi(di−z ′) + R̃i,i−1

TE,TMe−2jkzidi

]
R̃i,i+1

TE,TMM i
TE,TM , (96)

Be,m
h =

[
e−2jkzi(di−z ′) − R̃i,i−1

TM,TEe−2jkzidi

]
R̃i,i+1

TM,TEM i
TM,TE , (97)

Ce,m
h =

[
e−2jkzi(di+z ′) + R̃i,i+1

TE,TMe−2jkzidi

]
R̃i,i−1

TE,TMM i
TE,TM , (98)

De,m
h =

[
−e−2jkzi(di+z ′) + R̃i,i+1

TM,TEe−2jkzidi

]
R̃i,i−1

TM,TEM i
TM,TE , (99)

Ae,m
v =

[
e−2jkzi(di+z ′) + R̃i,i+1

TE,TMe−2jkzidi

]
R̃i,i+1

TE,TMM i
TE,TM , (100)

Be,m
v =

[
e−2jkzi(di−z ′) − R̃i,i−1

TM,TEe−2jkzidi

]
R̃i,i+1

TM,TEM i
TM,TE , (101)

Ce,m
v =

[
−e−2jkzi(di+z ′) + R̃i,i+1

TE,TMe−2jkzidi

]
R̃i,i−1

TE,TMM i
TE,TM , (102)

De,m
v =

[
−e−2jkzi(di−z ′) + R̃i,i+1

TM,TEe−2jkzidi

]
R̃i,i−1

TM,TEM i
TM,TE , (103)

Considering the equivalent transmission line, we can derive the generalized re-
flection coefficients, R̃i,i+1

TE , R̃i,i−1
TE , R̃i,i−1

TM , R̃i,i+1
TM , as functions of the Fresnel reflection

coefficients. These are given by[21]:
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R̃i,j =
ri,j + R̃i+1,j+1e

−2jkzjdj

1 + ri,jR̃i+1,j+1e−2jkzjdj
(104)

where MTE,MTM can be defined as

MTE(i) = [1− R̃i,i−1
TE R̃i,i+1

TE e−2jkzidi ]−1 (105)

MTM(i) = [1− R̃i,i−1
TM R̃i,i+1

TM e−2jkzidi ]−1 (106)

Approximation of the Green’s function

Let us consider again the multilayered structure in Fig. 5. We suppose a lossless
dielectric. The origin of the coordinate system we have used is located at the bottom
of the source layer. The spatial domain Green’s function is represented by the 2-D
inverse Fourier Transform, better known as the Sommerfeld Integral [22],

GA,q =
1

4π

∫

SIP

kρH
(2)
0 (kρρ)G̃

A,q
, (107)

where H
(2)
0 (kρρ) is the Hankel function of the second kind, SIP is the Sommerfeld

Integration Path (sketched in Fig. 6) and G̃A,q is the spectral domain Green’s func-
tion. Apart from special cases, the Sommerfeld integral in eq. (107), cannot be
evaluated analytically. It is worth noting that the Sommerfeld Integral (107) can
be evaluated analytically by using the well-known Sommerfeld identity (108) when
the Green’s function is approximated by complex exponentials [?]

e−jkR

R
=
−j

2

∫

SIP

dkρkρH
(2)
0 (kρρ)

e−jkz |z|

kz

. (108)

Therefore, after computing the spectral domain Green’s function, we can approx-
imate it through a set of complex exponentials, whose complex coefficients are
extracted by using the Generalized Pencil of Function method [10]. Before apply-
ing this procedure, we have to deform the integration path in order for the Green’s
function to be in a form suitable for this approach. Once we have expressed the
Green’s function in this approximated form, we can easily apply the Sommerfeld
identity. According to the results described in section we can write the terms of
the Green’s function as the sum of three different contributions, the direct wave,
the up-going and down-going terms, which depend on z and −z , respectively.

F̃ (z, z ′) = ejkzm|z−z ′| + Ame−jkmzz + Bme−jkmzz , (109)

where Am, Bm depend on z ′ and are directly related to the specific values at the
interfaces. Following an approach similar to those used in [17] and in [19] we can
summarize the entire procedure as follows:
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k 0

k z = - j k 0 T 2

k z = - j k 0 ( T 1 + T 2 )

C 1

C 2

S I P
I m { k z }

R e { k z }

Figure 6: Two levels GPOF sampling paths.

- the complete set of components for the Green’s functions for the scalar and vector
potentials are computed in the spectral domain;
- these functions are sampled along a path in the kρ plane and then approximated
by using the GPOF method.
Based on the approach proposed in [17], we use a two-step approximation, so the
Green’s function in the spatial domain is approximated through two sets of complex
exponentials. Since we have not assumed the extraction of the surface wave poles,
we need an accurate approximation for the Green’s function in both the near field
and the far field. This cannot be easily done if we apply a single step approximation
procedure, due to the influence of the bounds of the modified path on the accuracy
of the approximation. A higher limit value would give a better approximation in
the far field, while with a lower one we will obtain a better result in the near field
[23]. Therefore, in order to achieve a good result along the chosen test-source range,
we choose two different paths C1, C2 along which the Green’s function is sampled.
The chosen paths are sketched in Fig. 6 and are given by the equations (110),(111):

C1 : kz1 = −jk0 [T2 + t] with 0 ≤ t ≤ T1 (110)

C2 : Kz2 = k0

[
−jt +

(
1− t

T2

)]
with 0 ≤ t ≤ T2 (111)

where T1, T2 are the bounds of the sampling interval. The choice of T1 and T2

is a crucial step for the approximation and depends on the characteristics of the
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structure itself. Once we have set these bounds, we sample the Green’s function
along the path C1 and we approximate this set of samples with the GPOF method
obtaining

G̃ '
N1∑
n=1

a1ne−α1nkz1 . (112)

where a1n, α1n are the complex coefficients resulting from the GPOF procedure.
- We suppose that this series, obtained as an approximation of the Green’s function
along C1, is valid throughout the whole domain. Then we evaluate the Green’s
function along the C2 path and compute the error function as the difference between
this function and the previous one. The resulting ”error function” is approximated
through the GPOF method.
Following this procedure we can write the entire spectral domain Green’s function
as

G̃
A,q

=

N1∑
n=1

a1ne
−α1nkz +

N2∑
m=1

a2me−α2mkz , (113)

where a1n, α1n, a2n, α2n are the complex coefficents obtained with the GPOF at the
first and second step, respectively. N1, N2 are the number of exponentials necessary
to approximate the pertinent function. Substituting (113) in (107) we obtain

GA,q =
1

4π

∫

C1+C2

dKρkρH
(2)
0 (kρρ)

N1∑
n=1

a1ne
−α1nkz+

1

4π

∫

C2

dKρkρH
(2)
0 (kρρ)

N2∑
m=1

a2me−α2mkz , (114)

It is worth noting that this choice leads to an analytical evaluation of the spatial
domain Green’s function through the Sommerfeld Identity. Considering eqs. (114)
and (108) we obtain

GA,q =
1

4π

N1∑
n=1

a1n
e−jkR1n

R1n

+
1

4π

N2∑
m=1

a2m
e−jkR2m

R2m

, (115)

where R1n =
√
|ρ− ρ ′|2 + (jα1n ± (z ± z′)2, and R2m =

√
|ρ− ρ ′|2 + (jα2m ± (z ± z′)2.
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