
VALab Remote Execution

The aim of this project is to enable a user to use particular routines, which we will call modules, without
having to resort to executables or source codes located on your server. This can be done by executing the
routine by remote access on your server. We provide a program which allows the user to send to the
VALab server the input file(s), containing the data that a particular module requires, and to receive the
output file(s), containing the results. VALab server provides to forward all the data to your server. Note
that, as the remote access on your server will always pass through VALab, the user will never contact your
server directly and will never know the location of a module executed on your server. The method used to
exchange the files and information is electronic mail.

How to install the VALab remote execution robot on your linux server.

1. Prerequisites:

1.1. Perl must be installed. At least version 5.8.4 it’s necessary.

1.2. It’s necessary to have a mail server installed on your server. VALab server uses SendMail and

we suggest to use the same mail server (www.sendmail.org). Actually, the only strictly necessary
feature that the mail server should have, is the support to the $HOME/.forward standard (also
known as dot-forward or dotforward). See Appendix 1 for more information about SendMail.

1.3. VALab server uses also smrsh. smrsh is a restricted shell utility that provides the ability to

specify, through a configuration, an explicit list of executable programs. When used in conjunction
with SendMail, smrsh effectively limits SendMail's scope of program execution to only those
programs specified in smrsh's configuration. The purpose for restricting the list of programs that
can be executed in this manner is to keep mail messages (either through an alias or the .forward
file in a user's home directory) from being sent to arbitrary programs which are not necessarily
known to be sufficiently paranoid in checking their input, and can therefore be easily subverted.
See Appendices 2 and 3 for further information on smrsh and security issues. We strongly
recommend to use smrsh and to place the provided robot.pl code in the folder /etc/smrsh/. This
precaution will eliminate any security problem related to the remote execution.

2. Extract in a temporary directory of your choice the provided archive Valab-Remote-Execution-
1.0.tar.gz:

 tar –xzvf Valab-Remote-Execution-1.0.tar.gz

A Valab-Remote-Execution directory will be created. Move into the directory:

 cd ./Valab-Remote-Execution

If you list the content of the directory you can find the following files and directories:

 readme – this file.
 Mail-SendEasy-1.2.tar.gz – compressed file archive containing the Mail::SendEasy perl module.
 robot – directory containing the main perl executable.
 dot-forward – directory containing a .forward example file.

http://www.sendmail.org/

 prog_data – directory containing the data configuration program.

3. Install the provided perl module Mail::SendEasy.

 (starting from the Valab-Remote-Execution directory)
 tar –xzvf Mail-SendEasy-1.2.tar.gz
 cd ./Mail-SendEasy-1.2
 perl Makefile.PL
 make
 make test
 make install

4. Copy the perl program robot.pl in the right directory.

 (starting from the Valab-Remote-Execution directory)
 cd ./robot
 cp robot.pl /etc/smrsh/
 cd /etc/smrsh/
 chown root:root robot.pl
 chmod +x robot.pl

If you don’t use the smrsh restricted shell, you can place the robot.pl file in any other folder you
choose instead of /etc/smrsh/.

5. Create a user called “robot”.

6. Create (if it doesn’t still exist) the .forward file in the robot home directory (/home/robot/.forward).
Edit the .forward file and write the following line (with double quotes).

 "|exec /etc/smrsh/robot.pl"
 (leave a blank line)

Note the blank line to be left at the end. Obviously, if you copied the robot.pl file in a different
directory, specify that instead of /etc/smrsh/. A copy of this file can be found in the dot-forward
directory.

Note: Actually, if you have the smrsh installed, you can just write "|exec robot.pl" as the entire
path (if any), before the executable file name, will be automatically ignored and substituted with
/etc/smrsh/.

7. Create a directory where the remote execution temporary files will be placed. For example:

 mkdir /home/robot/tmp/

8. Create a directory where the remote execution working directories will be placed. For example:

 mkdir /home/robot/exec/

9. Create a directory where the remote execution log files will be placed. For example:

 mkdir /home/robot/logs/

10. Now, you have to create the prog.data file, containing all the necessary information about the modules
that you want to make available on your server.

10.1. Copy in a directory (e.g. /home/robot/prog_data/ can be a good choice) the files prog_data.pl

and prog_data.ini.

 (starting from the Valab-Remote-Execution directory)
 cd ./prog_data
 cp prog_data* /home/robot/prog_data/
 cd /home/robot/prog_data/
 chmod +x prog_data.pl

10.2. Edit the file progs_data.ini. For each program you want make available, you have to write some
information (hereafter called section). The following is an example of a section:

 module_name = mie_robot
 program_name = mie_homogen_sphere
 path = /home/robot/progs/mie_homogen_sphere
 input_files = input1.in , input2.in
 output_files = output.out
 default_parameters =
 error_file = mie_homogen_sphere.err
 help_file =
 description =

 module_name is the name that the user will specify to select the execution of the module.
 program_name is the name of the called program. It is your internal name, the user will

never see this name.
 path is the path where is located your executable .
 input_file is the list of the input files required by the program. The names are separated by

commas. If the program doesn’t have fixed input file names, but, for example, they will be
specified by the user in the command line, simply place a * in place of names.

 output_file is the list of the output files required by the program. The names are separated
by commas. If the program doesn’t have fixed output file names, but, for example, they
will be specified by the user in the command line, simply place a * in place of names.

 default_parameters is an optional string of default command line parameters passed to the
executables. The parameters will be passed exactly as they appear after the =.

 error_file is the name of the optional file that contains the errors code explanation of your
program. If the file is specified and an error occurs, robot will show the error code number
and will search in the file for the associated text string (that usually give an extended
explanation of the error). If no file is specified, in case of error, robot will show only the
error code number.

 help_file is the name of an optional file that contains some help information that will be
replied to the user in case of errors in the input parameters (command line and/or input
files).

 description is an optional brief description of the program.

Note that all the nine fields of a section are required (not necessary in the given order). Note also
that the only fields that can be empty are default_parameters, error_file, help_file and description.
All the other are required. Remember that if input or output files are not required you must place
a * in place of file names.

10.3. Execute the prog_data.pl program.

 cd /home/robot/prog_data/
 ./prog_data.pl

10.4. Make sure that the file prog.data has been properly created.

 cd /home/robot/prog_data/
 ls prog.data

10.5. Make sure that there are no errors, that is the error file is empty.

 cd /home/robot/prog_data/
 cat ./error_file.log

At last, send a copy of prog_data.ini to valab@valab.det.unifi.it, we need some information on your
programs in order to properly configure VALab server.

11. Finally, edit the file robot.pl that you have previously copied in the /etc/smrsh/ folder. Modify the
following section at the beginning of the program, inserting the information on your chosen paths.

 ##
 #
 # configuration
 #
 ##
 #
 # configure these parameters
 #

 my $log_path = "/home/robot/logs";
 my $exec_path = "/home/robot/exec";
 my $temp_path = "/home/robot/tmp";
 my $data_path = "/home/robot/prog_data";

 my $SMTP_Server = "your_smtp_server";
 my $SMTP_timeout = 120;

 #
 # end of configuration
 #
 ##

If you used the directory proposed in the previous examples, you need only to place the name of your
SMPT server in the place of "your_smtp_server" (note that the double quotes are necessary).

If you have any installing problem you can mail to valab@valab.det.unifi.it.

mailto:valab@valab.det.unifi.it
mailto:valab@valab.det.unifi.it

Location of required files and directories.

Appendix 1

Sendmail

NAME
sendmail - an electronic mail transport agent

SYNOPSIS
sendmail [flags] [address ...]
newaliases
mailq [-v]
hoststat
purgestat
smtpd

DESCRIPTION
Sendmail sends a message to one or more recipients, routing the message over whatever networks are
necessary. Sendmail does internetwork forwarding as necessary to deliver the message to the correct
place.

Sendmail is not intended as a user interface routine; other programs provide user-friendly front ends;
sendmail is used only to deliver pre-formatted messages.

With no flags, sendmail reads its standard input up to an end-of-file or a line consisting only of a single
dot and sends a copy of the message found there to all of the addresses listed. It determines the
network(s) to use based on the syntax and contents of the addresses.

Local addresses are looked up in a file and aliased appropriately. Aliasing can be prevented by preceding
the address with a backslash. Beginning with 8.10, the sender is included in any alias expansions, e.g., if
`john' sends to `group', and `group' includes `john' in the expansion, then the letter will also be
delivered to `john'.

Parameters
-Ac

Use submit.cf even if the operation mode does not indicate an initial mail submission.
-Am

Use sendmail.cf even if the operation mode indicates an initial mail submission.
-Btype

Set the body type to type. Current legal values are 7BIT or 8BITMIME.
-ba

Go into ARPANET mode. All input lines must end with a CR-LF, and all messages will be generated
with a CR-LF at the end. Also, the ``From:'' and ``Sender:'' fields are examined for the name of
the sender.

-bd
Run as a daemon. Sendmail will fork and run in background listening on socket 25 for incoming
SMTP connections. This is normally run from /etc/rc.

-bD
Same as -bd except runs in foreground.

-bh
Print the persistent host status database.

-bH
Purge expired entries from the persistent host status database.

-bi
Initialize the alias database.

-bm
Deliver mail in the usual way (default).

-bp
Print a listing of the queue(s).

-bP
Print number of entries in the queue(s); only available with shared memory support.

-bs
Use the SMTP protocol as described in RFC821 on standard input and output. This flag implies all
the operations of the -ba flag that are compatible with SMTP.

-bt
Run in address test mode. This mode reads addresses and shows the steps in parsing; it is used for
debugging configuration tables.

-bv
Verify names only - do not try to collect or deliver a message. Verify mode is normally used for
validating users or mailing lists.

-Cfile
Use alternate configuration file. Sendmail refuses to run as root if an alternate configuration file is
specified.

-dX
Set debugging value to X.

-Ffullname
Set the full name of the sender.

-fname
Sets the name of the ``from'' person (i.e., the envelope sender of the mail). This address may also
be used in the From: header if that header is missing during initial submission. The envelope
sender address is used as the recipient for delivery status notifications and may also appear in a
Return-Path: header. -f should only be used by ``trusted'' users (normally root, daemon, and
network) or if the person you are trying to become is the same as the person you are. Otherwise,
an X-Authentication-Warning header will be added to the message.

-G
Relay (gateway) submission of a message, e.g., when rmail calls sendmail .

-hN
Set the hop count to N. The hop count is incremented every time the mail is processed. When it
reaches a limit, the mail is returned with an error message, the victim of an aliasing loop. If not
specified, ``Received:'' lines in the message are counted.

-i
Ignore dots alone on lines by themselves in incoming messages. This should be set if you are
reading data from a file.

-L tag
Set the identifier used in syslog messages to the supplied tag.

-N dsn
Set delivery status notification conditions to dsn, which can be `never' for no notifications or a
comma separated list of the values `failure' to be notified if delivery failed, `delay' to be notified if
delivery is delayed, and `success' to be notified when the message is successfully delivered.

-n
Don't do aliasing.

-O option=value
Set option option to the specified value. This form uses long names. See below for more details.

-ox value
Set option x to the specified value. This form uses single character names only. The short names
are not described in this manual page; see the Sendmail Installation and Operation Guide for
details.

-pprotocol
Set the name of the protocol used to receive the message. This can be a simple protocol name
such as ``UUCP'' or a protocol and hostname, such as ``UUCP:ucbvax''.

-q[time]
Process saved messages in the queue at given intervals. If time is omitted, process the queue
once. Time is given as a tagged number, with `s' being seconds, `m' being minutes (default), `h'
being hours, `d' being days, and `w' being weeks. For example, `-q1h30m' or `-q90m' would both
set the timeout to one hour thirty minutes. By default, sendmail will run in the background. This
option can be used safely with -bd.

-qp[time]
Similar to -qtime, except that instead of periodically forking a child to process the queue, sendmail
forks a single persistent child for each queue that alternates between processing the queue and
sleeping. The sleep time is given as the argument; it defaults to 1 second. The process will always
sleep at least 5 seconds if the queue was empty in the previous queue run.

-qf
Process saved messages in the queue once and do not fork(), but run in the foreground.

-qG name
Process jobs in queue group called name only.

-q[!]I substr
Limit processed jobs to those containing substr as a substring of the queue id or not when ! is
specified.

-q[!]R substr
Limit processed jobs to those containing substr as a substring of one of the recipients or not when !
is specified.

-q[!]S substr
Limit processed jobs to those containing substr as a substring of the sender or not when ! is
specified.

-R return
Set the amount of the message to be returned if the message bounces. The return parameter can
be `full' to return the entire message or `hdrs' to return only the headers. In the latter case also
local bounces return only the headers.

-rname
An alternate and obsolete form of the -f flag.

-t
Read message for recipients. To:, Cc:, and Bcc: lines will be scanned for recipient addresses. The
Bcc: line will be deleted before transmission.

-V envid
Set the original envelope id. This is propagated across SMTP to servers that support DSNs and is
returned in DSN-compliant error messages.

-v
Go into verbose mode. Alias expansions will be announced, etc.

-X logfile
Log all traffic in and out of mailers in the indicated log file. This should only be used as a last resort
for debugging mailer bugs. It will log a lot of data very quickly.

--
Stop processing command flags and use the rest of the arguments as addresses.

Options
There are also a number of processing options that may be set. Normally these will only be used by a
system administrator. Options may be set either on the command line using the -o flag (for short names),
the -O flag (for long names), or in the configuration file. This is a partial list limited to those options that
are likely to be useful on the command line and only shows the long names; for a complete list (and
details), consult the Sendmail Installation and Operation Guide. The options are:
AliasFile=file

Use alternate alias file.
HoldExpensive

On mailers that are considered ``expensive'' to connect to, don't initiate immediate connection.
This requires queueing.

CheckpointInterval=N
Checkpoint the queue file after every N successful deliveries (default 10). This avoids excessive
duplicate deliveries when sending to long mailing lists interrupted by system crashes.

DeliveryMode=x
Set the delivery mode to x. Delivery modes are `i' for interactive (synchronous) delivery, `b' for
background (asynchronous) delivery, `q' for queue only - i.e., actual delivery is done the next time
the queue is run, and `d' for deferred - the same as `q' except that database lookups for maps
which have set the -D option (default for the host map) are avoided.

ErrorMode=x
Set error processing to mode x. Valid modes are `m' to mail back the error message, `w' to
``write'' back the error message (or mail it back if the sender is not logged in), `p' to print the
errors on the terminal (default), `q' to throw away error messages (only exit status is returned),
and `e' to do special processing for the BerkNet. If the text of the message is not mailed back by
modes `m' or `w' and if the sender is local to this machine, a copy of the message is appended to
the file dead.letter in the sender's home directory.

SaveFromLine
Save UNIX-style From lines at the front of messages.

MaxHopCount=N
The maximum number of times a message is allowed to ``hop'' before we decide it is in a loop.

IgnoreDots
Do not take dots on a line by themselves as a message terminator.

SendMimeErrors
Send error messages in MIME format. If not set, the DSN (Delivery Status Notification) SMTP
extension is disabled.

ConnectionCacheTimeout=timeout
Set connection cache timeout.

ConnectionCacheSize=N
Set connection cache size.

LogLevel=n
The log level.

MeToo=False
Don't send to ``me'' (the sender) if I am in an alias expansion.

CheckAliases
Validate the right hand side of aliases during a newaliases(1) command.

http://linux.about.com/library/cmd/blcmdl1_newaliases.htm

OldStyleHeaders
If set, this message may have old style headers. If not set, this message is guaranteed to have
new style headers (i.e., commas instead of spaces between addresses). If set, an adaptive
algorithm is used that will correctly determine the header format in most cases.

QueueDirectory=queuedir
Select the directory in which to queue messages.

StatusFile=file
Save statistics in the named file.

Timeout.queuereturn=time
Set the timeout on undelivered messages in the queue to the specified time. After delivery has
failed (e.g., because of a host being down) for this amount of time, failed messages will be
returned to the sender. The default is five days.

UserDatabaseSpec=userdatabase
If set, a user database is consulted to get forwarding information. You can consider this an adjunct
to the aliasing mechanism, except that the database is intended to be distributed; aliases are local
to a particular host. This may not be available if your sendmail does not have the USERDB option
compiled in.

ForkEachJob
Fork each job during queue runs. May be convenient on memory-poor machines.

SevenBitInput
Strip incoming messages to seven bits.

EightBitMode=mode
Set the handling of eight bit input to seven bit destinations to mode: m (mimefy) will convert to
seven-bit MIME format, p (pass) will pass it as eight bits (but violates protocols), and s (strict) will
bounce the message.

MinQueueAge=timeout
Sets how long a job must ferment in the queue between attempts to send it.

DefaultCharSet=charset
Sets the default character set used to label 8-bit data that is not otherwise labelled.

DialDelay=sleeptime
If opening a connection fails, sleep for sleeptime seconds and try again. Useful on dial-on-demand
sites.

NoRecipientAction=action
Set the behaviour when there are no recipient headers (To:, Cc: or Bcc:) in the message to action:
none leaves the message unchanged, add-to adds a To: header with the envelope recipients, add-
apparently-to adds an Apparently-To: header with the envelope recipients, add-bcc adds an empty
Bcc: header, and add-to-undisclosed adds a header reading `To: undisclosed-recipients:;'.

MaxDaemonChildren=N
Sets the maximum number of children that an incoming SMTP daemon will allow to spawn at any
time to N.

ConnectionRateThrottle=N
Sets the maximum number of connections per second to the SMTP port to N.

In aliases, the first character of a name may be a vertical bar to cause interpretation of the rest of the
name as a command to pipe the mail to. It may be necessary to quote the name to keep sendmail from
suppressing the blanks from between arguments. For example, a common alias is:

msgs: "|/usr/bin/msgs -s"

Aliases may also have the syntax ``:include:filename'' to ask sendmail to read the named file for a list of
recipients. For example, an alias such as:

poets: ":include:/usr/local/lib/poets.list"

would read /usr/local/lib/poets.list for the list of addresses making up the group.

Sendmail returns an exit status describing what it did. The codes are defined in <sysexits.h>:

EX_OK
Successful completion on all addresses.

EX_NOUSER
User name not recognized.

EX_UNAVAILABLE
Catchall meaning necessary resources were not available.

EX_SYNTAX
Syntax error in address.

EX_SOFTWARE
Internal software error, including bad arguments.

EX_OSERR
Temporary operating system error, such as ``cannot fork''.

EX_NOHOST
Host name not recognized.

EX_TEMPFAIL
Message could not be sent immediately, but was queued.

If invoked as newaliases, sendmail will rebuild the alias database. If invoked as mailq, sendmail will
print the contents of the mail queue. If invoked as hoststat, sendmail will print the persistent host
status database. If invoked as purgestat, sendmail will purge expired entries from the persistent host
status database. If invoked as smtpd, sendmail will act as a daemon, as if the -bd option were specified.

SEE ALSO

http://www.sendmail.org/

Important: Use the man command (% man) to see how a command is used on your particular computer.

http://linux.about.com/gi/dynamic/offsite.htm?site=http://www.sendmail.org/

Appendix 2

smrsh

NAME
smrsh - restricted shell for sendmail

SYNOPSIS
smrsh -c command

DESCRIPTION
The smrsh program is intended as a replacement for sh for use in the ``prog'' mailer in sendmail
configuration files. It sharply limits the commands that can be run using the ``|program'' syntax of
sendmail in order to improve the over all security of your system. Briefly, even if a ``bad guy'' can get
sendmail to run a program without going through an alias or forward file, smrsh limits the set of programs
that he or she can execute.

Briefly, smrsh limits programs to be in a single directory, by default /etc/smrsh, allowing the system
administrator to choose the set of acceptable commands, and to the shell builtin commands ``exec'',
``exit'', and ``echo''. It also rejects any commands with the characters ``', `<', `>', `;', `$', `(', `)',
`\r' (carriage return), or `\n' (newline) on the command line to prevent ``end run'' attacks. It allows
``||'' and ``&&'' to enable commands like: ``"|exec /usr/local/bin/procmail -f- /etc/procmailrcs/user ||
exit 75"''

Initial pathnames on programs are stripped, so forwarding to ``/usr/ucb/vacation'', ``/usr/bin/vacation'',
``/home/server/mydir/bin/vacation'', and ``vacation'' all actually forward to ``/etc/smrsh/vacation''.

System administrators should be conservative about populating the /etc/smrsh directory. Reasonable
additions are vacation, procmail, and the like. No matter how brow-beaten you may be, never include any
shell or shell-like program (such as perl) in the /etc/smrsh directory. Note that this does not restrict the
use of shell or perl scripts in the sm.bin directory (using the ``#!'' syntax); it simply disallows execution
of arbitrary programs.

Appendix 3

Secure Sendmail using smrsh

The smrsh program is intended as a replacement for /bin/sh in the program mailer definition of Sendmail.
It's a restricted shell utility that provides the ability to specify, through the /etc/smrsh directory, an
explicit list of executable programs available to Sendmail. To be more accurate, even if somebody with
malicious intentions can get Sendmail to run a program without going through an aliases or forward file,
smrsh limits the set of programs that he or she can execute. When used in conjunction with Sendmail,
smrsh effectively limits Sendmail's scope of program execution to only those programs specified in
smrsh's directory. If you have followed what we did above, smrsh program is already compiled and
installed on your computer under /usr/sbin/smrsh.

1. The first thing we need to do is to determine the list of commands that smrsh should allow
Sendmail to run. By default we include, but are not limited to:

o /bin/mail -if you have it installed on your system
o /usr/bin/procmail -if you have it installed on your system

IMPORTANT: You should not include interpreter programs such as sh(1), csh(1), perl(1), uudecode(1) or
sed(1) -the stream editor, in your list of acceptable commands.

2. You will next need to populate the /etc/smrsh directory with the programs that are allowable for
Sendmail to execute. To prevent duplicate programs, and do a nice job, it is better to establish
links to the allowable programs from /etc/smrsh rather than copy programs to this directory. To
allow the mail program /bin/mail, use the following commands:

 [root@deep] /# cd /etc/smrsh
 [root@deep]/smrsh# ln -s /bin/mail mail

3. To allow the procmail program /usr/bin/procmail, use the following commands:

 [root@deep] /# cd /etc/smrsh
 [root@deep]/smrsh# ln -s /usr/bin/procmail procmail

4. This will allow the mail and procmail programs to be run from a user's .forward file or an aliases file
which uses the program syntax.

5. IMPORTANT: Procmail is required only in Mail Hub Server and not in Local Client Mail
Server. If you've configured your system like a Mail Hub Server then make the link with
procmail as explained above, if you've configured your system as a Local Client Server then
skip the procmail step above.

6. We can now configure Sendmail to use the restricted shell. The program mailer is defined by a
single line in the Sendmail configuration file, /etc/mail/sendmail.cf. You must modify this single line
Mprog definition in the sendmail.cf file, by replacing the /bin/sh specification with /usr/sbin/smrsh.
Edit the sendmail.cf file, vi /etc/mail/sendmail.cf and change the line:

Example: sendmail.cf

 Mprog, P=/bin/sh, F=lsDFMoqeu9, S=10/30, R=20/40, D=$z:/, T=X-Unix, A=sh -c $u

Which should be changed to:

 Mprog, P=/usr/sbin/smrsh, F=lsDFMoqeu9, S=10/30, R=20/40, D=$z:/, T=X-Unix, A=sh -c $u

7. Now re-start the sendmail process manually with the following command:

 [root@deep] /# /etc/rc.d/init.d/sendmail restart

Instead, use the technique shown above for other /etc/mail/sendmail.cf files in your network like the one
for the nullclient local or neighbor client and servers that use the null.mc macro configuration file to
generate the /etc/mail/sendmail.cf file.

	NAME
	SYNOPSIS
	DESCRIPTION
	Parameters
	Options
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION

